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Recurrent Neural Network (RNN)

RNN:
1. Sequential processing: sentences must be processed words by words. In order to 

encode the second word in a sentence you need the previously computed hidden 
states of the first word, which means you cannot train the model in parallel.

2. Past information retained through past hidden states: The encoding of words 
quickly lose their influence after a few time steps. LSTM and bi-LSTM can to some 
extent mitigate this problem, but nevertheless the problem is inherently related to 
recursion structure.

https://d2l.ai/chapter_recurrent-modern/seq2seq.html



Transformer

1. Non sequential: sentences 
are processed as a whole 
rather than word by word.

2. Self-Attention: Each token 
looks all positions of the 
input sequence.



A High-Level Look

In a machine translation application, it would take a sentence in one language, and 

output its translation in another.



A High-Level Look

we see 

1. An encoding component;

2. A decoding component;

3. And connections between 

them.



A High-Level Look

The encoding component is a 

stack of encoders (the paper 

stacks six of them). The 

decoding component is a stack 

of decoders of the same 

number. The encoders are all 

identical in structure, yet they 

do not share weights..



A High-Level Look

Each encoder is broken down into two sub-layers. 

1. The encoder’s inputs first flow through a self-attention layer.

2. The outputs of the self-attention layer are fed to a feed-forward neural network.

3. The decoder has an extra attention layer that helps the decoder focus on relevant 

parts of the input sentence.



Take a Closer Look
Each word embedding of the input 

sequence flows through each of the 

two layers of the encoder (vector 

size: 512 by default).

The maximum input sequence 

length is 512. It’s a hyper- 
parameter we can set. Basically 
it would be the length of the 
longest sentence in our training 
dataset; or we can take a length 
at 90th percentile for faster 
performance.

#pad if a input sequence is not 
max len.



Take a Closer Look
An encoder receives a list of vectors 
as input. It processes this list by 
1. passing these vectors into a 

‘self-attention’ layer, where 
tokens interact with each other.

2. then into a feed-forward neural 
network, where each token 
pass the exact same network 
with each vector flowing 
through it separately (we can 
parallelize ^_^. )

3. then sends out the output 
upwards to the next encoder.



Self-Attention at a High Level

As the model processes each word/token, self attention allows it to look at other positions 
in the input sequence for clues that can help lead to a better encoding for this word/token.

In RNN, a hidden state allows RNN to incorporate its representation of previous 
words/token it has processed with the current one it’s processing. You cannot look words 
after the current position.



Self-Attention at a High Level (an example)
Suppose we are going to translate the following sentence: 

The animal didn't cross the street because it was too tired

When the model is processing the word 
“it”, self-attention allows it to associate “it” 
with “animal”.

As we are encoding the word "it" in 
encoder, part of the attention mechanism 
was focusing on "The Animal".



Self-Attention in Detail (Step 1) The first step is to create three vectors 
from each of the encoder’s input vectors 
(in this case, the embedding of each 
word). 

So for each word, we create 
1. a Query vector, 
2. a Key vector, 
3. a Value vector. 

These vectors are created by multiplying 
the embedding by three trainable 
matrices.

Notice that these new vectors are smaller 
in dimension than the embedding vector 
(they don’t have to be).



Self-Attention in Detail (Step 2)

The second step is to calculate a 
score. 

Suppose we calculate the self-attention 
for the first word, “Thinking”.

We need to determine how much focus 
to place on other inputs as we encode 
a word at a certain position.  

The score is calculated by taking the 
dot product of the query vector with the 
key vector of the respective word we’re 
scoring. 



Self-Attention in Detail (Step 3, 4)

The third step is to divide the 
scores by the square root of the 
dimension of the key vectors (64 is 
used in the paper). This leads to 
having more stable gradients. 
There could be other possible 
values here).

Then the fourth step is to pass the 
result through a softmax operation, 
which determines to what extent 
each word will be attended to at 
this position.



Self-Attention in Detail (Step 5, 6)

The fifth step is to multiply each value 
vector by the softmax score (in 
preparation to sum them up).  

The sixth step is to sum up the weighted 
value vectors. This produces the output 
of the self-attention layer at this position 
(for the first word).

The resulting vector is one we can send 
along to the feed-forward neural 
network.



Matrix Calculation of Self-Attention (Step 1)

The first step is to calculate the Query, Key, 
and Value matrices. We do that by packing 
our embeddings into a matrix X, and 
multiplying it by the weight matrices we’ve 
trained (WQ, WK, WV).

Every row in the X matrix corresponds to a 
word in the input sentence.



Matrix Calculation of Self-Attention (Step 2)

Finally, we can condense steps 
two through six in one formula 
to calculate the outputs of the 
self-attention layer.



Multi-Head Self-Attention
The paper further refined the 
self-attention layer by adding a 
mechanism called “multi-headed” 
attention (the Transformer use 8 
attention heads). 

It gives the attention layer multiple 
“representation subspaces”. With 
multi-headed attention, we maintain 
separate Q/K/V weight matrices for 
each head resulting in different 
Q/K/V matrices. As we did before, 
we multiply X by the WQ/WK/WV 
matrices to produce Q/K/V matrices.



Multi-Head Self-Attention

Problem: The feed-forward layer 
is not expecting eight matrices – 
it’s expecting a single matrix (a 
vector for each word). So we 
need a way to condense these 
eight down into a single matrix.

Solution: We concat the matrices 
then multiply them by an 
additional weights matrix WO.



Multi-Head Self-Attention

1. Concatenate all the 
attention heads.

2. Multiply with trainable 
matrix WO.

3. Then we get a matrix 
X which captures 
information from all 
attention heads.



Put All Things Together



Re-visit Self-Attention example

As we encode the word "it", one 
attention head is focusing most on 
"the animal", while another is 
focusing on "tired" -- in a sense, the 
model's representation of the word 
"it" consists of some of the 
representation of both "animal" and 
"tired".

The animal didn't cross the 
street because it was too tired



Representing The Order of The Sequence
One thing that’s missing is a 
way to account for the order 
of the words in the input 
sequence.

To give the model a sense of 
the order of the words, we 
add positional encoding 
vectors -- the values of 
which follow a specific 
pattern.



Representing The Order of The Sequence

If we assumed the embedding has a dimensionality of 4, the actual 
positional encodings would look like the figure above.



Representing The Order of The Sequence
A real example of positional 
encoding for 20 words (rows) 
with an embedding size of 512 
(columns). You can see that it 
appears split in half down the 
center. That's because the 
values of the left half are 
generated by a sine function, 
and the right half is generated 
by a cosine function. They're 
then concatenated to form each 
of the positional encoding 
vectors.



The Residual Connection
Each sub-layer (self-attention, 
FFNN) in each encoder has a 
residual connection around it, 
and is followed by a 
layer-normalization step.



This figure shows the visualization of the 
vectors and the layer-norm operation 
associated with self attention.

The Residual Connection



The residual connection applies 
in the decoder as well. 

If we think of a Transformer as 2 
stacked encoders and decoders, 
it would look something like this 
figure.

The Residual Connection



The Decoder
Now that we’ve covered most of the 
concepts on the encoder side, we 
basically know how the components 
of decoders work as well. 

The encoder start by processing the 
input sequence. The output of the 
top encoder is then transformed into 
a set of attention matrices K and V. 
These are to be used by each 
decoder, which helps the decoder 
focus on appropriate places in the 
input sequence.



The Decoder
The following steps repeat the 
process until a <EOS> token 
is reached. The output of each 
step is fed to the bottom 
decoder in the next time step. 

And just like we did with the 
encoder inputs, we embed and 
add positional encoding to 
those decoder inputs to 
indicate the position of each 
word.



The Decoder
In the decoder, the self-attention 
layer is only allowed to attend to 
earlier positions in the output 
sequence (masking future 
positions before the softmax step 
in the self-attention calculation).  

The “Encoder-Decoder Attention” 
layer works just like multiheaded 
self-attention, except it creates its 
Queries matrix from the layer 
below it, and takes the Keys and 
Values matrix from the output of 
the encoder stack.



The Final Linear And Softmax Layer
The Linear layer is a simple fully 
connected neural network that 
projects the vector produced by 
the stack of decoders into a logit 
vector (dim=vocal_size).

The softmax layer then turns the 
logit vector into probabilities. The 
cell with the highest probability is 
chosen, and the word associated 
with it is produced as the output 
for this time step.



Full Architecture Re-Visit



Before We End - BERT (Bidirectional Encoder Representations from Transformer)





Questions?


