
Transformer

Present by: Liyan Tang

Attention Is All You Need (2017): https://arxiv.org/abs/1706.03762

Reference: http://jalammar.github.io/illustrated-transformer/

Google Scholar: 4th most influential paper in 2020

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Recurrent Neural Network (RNN)

RNN:
1. Sequential processing: sentences must be processed words by words. In order to

encode the second word in a sentence you need the previously computed hidden
states of the first word, which means you cannot train the model in parallel.

2. Past information retained through past hidden states: The encoding of words
quickly lose their influence after a few time steps. LSTM and bi-LSTM can to some
extent mitigate this problem, but nevertheless the problem is inherently related to
recursion structure.

https://d2l.ai/chapter_recurrent-modern/seq2seq.html

Transformer

1. Non sequential: sentences
are processed as a whole
rather than word by word.

2. Self-Attention: Each token
looks all positions of the
input sequence.

A High-Level Look

In a machine translation application, it would take a sentence in one language, and

output its translation in another.

A High-Level Look

we see

1. An encoding component;

2. A decoding component;

3. And connections between

them.

A High-Level Look

The encoding component is a

stack of encoders (the paper

stacks six of them). The

decoding component is a stack

of decoders of the same

number. The encoders are all

identical in structure, yet they

do not share weights..

A High-Level Look

Each encoder is broken down into two sub-layers.

1. The encoder’s inputs first flow through a self-attention layer.

2. The outputs of the self-attention layer are fed to a feed-forward neural network.

3. The decoder has an extra attention layer that helps the decoder focus on relevant

parts of the input sentence.

Take a Closer Look
Each word embedding of the input

sequence flows through each of the

two layers of the encoder (vector

size: 512 by default).

The maximum input sequence

length is 512. It’s a hyper-
parameter we can set. Basically
it would be the length of the
longest sentence in our training
dataset; or we can take a length
at 90th percentile for faster
performance.

#pad if a input sequence is not
max len.

Take a Closer Look
An encoder receives a list of vectors
as input. It processes this list by
1. passing these vectors into a

‘self-attention’ layer, where
tokens interact with each other.

2. then into a feed-forward neural
network, where each token
pass the exact same network
with each vector flowing
through it separately (we can
parallelize ^_^.)

3. then sends out the output
upwards to the next encoder.

Self-Attention at a High Level

As the model processes each word/token, self attention allows it to look at other positions
in the input sequence for clues that can help lead to a better encoding for this word/token.

In RNN, a hidden state allows RNN to incorporate its representation of previous
words/token it has processed with the current one it’s processing. You cannot look words
after the current position.

Self-Attention at a High Level (an example)
Suppose we are going to translate the following sentence:

The animal didn't cross the street because it was too tired

When the model is processing the word
“it”, self-attention allows it to associate “it”
with “animal”.

As we are encoding the word "it" in
encoder, part of the attention mechanism
was focusing on "The Animal".

Self-Attention in Detail (Step 1) The first step is to create three vectors
from each of the encoder’s input vectors
(in this case, the embedding of each
word).

So for each word, we create
1. a Query vector,
2. a Key vector,
3. a Value vector.

These vectors are created by multiplying
the embedding by three trainable
matrices.

Notice that these new vectors are smaller
in dimension than the embedding vector
(they don’t have to be).

Self-Attention in Detail (Step 2)

The second step is to calculate a
score.

Suppose we calculate the self-attention
for the first word, “Thinking”.

We need to determine how much focus
to place on other inputs as we encode
a word at a certain position.

The score is calculated by taking the
dot product of the query vector with the
key vector of the respective word we’re
scoring.

Self-Attention in Detail (Step 3, 4)

The third step is to divide the
scores by the square root of the
dimension of the key vectors (64 is
used in the paper). This leads to
having more stable gradients.
There could be other possible
values here).

Then the fourth step is to pass the
result through a softmax operation,
which determines to what extent
each word will be attended to at
this position.

Self-Attention in Detail (Step 5, 6)

The fifth step is to multiply each value
vector by the softmax score (in
preparation to sum them up).

The sixth step is to sum up the weighted
value vectors. This produces the output
of the self-attention layer at this position
(for the first word).

The resulting vector is one we can send
along to the feed-forward neural
network.

Matrix Calculation of Self-Attention (Step 1)

The first step is to calculate the Query, Key,
and Value matrices. We do that by packing
our embeddings into a matrix X, and
multiplying it by the weight matrices we’ve
trained (WQ, WK, WV).

Every row in the X matrix corresponds to a
word in the input sentence.

Matrix Calculation of Self-Attention (Step 2)

Finally, we can condense steps
two through six in one formula
to calculate the outputs of the
self-attention layer.

Multi-Head Self-Attention
The paper further refined the
self-attention layer by adding a
mechanism called “multi-headed”
attention (the Transformer use 8
attention heads).

It gives the attention layer multiple
“representation subspaces”. With
multi-headed attention, we maintain
separate Q/K/V weight matrices for
each head resulting in different
Q/K/V matrices. As we did before,
we multiply X by the WQ/WK/WV
matrices to produce Q/K/V matrices.

Multi-Head Self-Attention

Problem: The feed-forward layer
is not expecting eight matrices –
it’s expecting a single matrix (a
vector for each word). So we
need a way to condense these
eight down into a single matrix.

Solution: We concat the matrices
then multiply them by an
additional weights matrix WO.

Multi-Head Self-Attention

1. Concatenate all the
attention heads.

2. Multiply with trainable
matrix WO.

3. Then we get a matrix
X which captures
information from all
attention heads.

Put All Things Together

Re-visit Self-Attention example

As we encode the word "it", one
attention head is focusing most on
"the animal", while another is
focusing on "tired" -- in a sense, the
model's representation of the word
"it" consists of some of the
representation of both "animal" and
"tired".

The animal didn't cross the
street because it was too tired

Representing The Order of The Sequence
One thing that’s missing is a
way to account for the order
of the words in the input
sequence.

To give the model a sense of
the order of the words, we
add positional encoding
vectors -- the values of
which follow a specific
pattern.

Representing The Order of The Sequence

If we assumed the embedding has a dimensionality of 4, the actual
positional encodings would look like the figure above.

Representing The Order of The Sequence
A real example of positional
encoding for 20 words (rows)
with an embedding size of 512
(columns). You can see that it
appears split in half down the
center. That's because the
values of the left half are
generated by a sine function,
and the right half is generated
by a cosine function. They're
then concatenated to form each
of the positional encoding
vectors.

The Residual Connection
Each sub-layer (self-attention,
FFNN) in each encoder has a
residual connection around it,
and is followed by a
layer-normalization step.

This figure shows the visualization of the
vectors and the layer-norm operation
associated with self attention.

The Residual Connection

The residual connection applies
in the decoder as well.

If we think of a Transformer as 2
stacked encoders and decoders,
it would look something like this
figure.

The Residual Connection

The Decoder
Now that we’ve covered most of the
concepts on the encoder side, we
basically know how the components
of decoders work as well.

The encoder start by processing the
input sequence. The output of the
top encoder is then transformed into
a set of attention matrices K and V.
These are to be used by each
decoder, which helps the decoder
focus on appropriate places in the
input sequence.

The Decoder
The following steps repeat the
process until a <EOS> token
is reached. The output of each
step is fed to the bottom
decoder in the next time step.

And just like we did with the
encoder inputs, we embed and
add positional encoding to
those decoder inputs to
indicate the position of each
word.

The Decoder
In the decoder, the self-attention
layer is only allowed to attend to
earlier positions in the output
sequence (masking future
positions before the softmax step
in the self-attention calculation).

The “Encoder-Decoder Attention”
layer works just like multiheaded
self-attention, except it creates its
Queries matrix from the layer
below it, and takes the Keys and
Values matrix from the output of
the encoder stack.

The Final Linear And Softmax Layer
The Linear layer is a simple fully
connected neural network that
projects the vector produced by
the stack of decoders into a logit
vector (dim=vocal_size).

The softmax layer then turns the
logit vector into probabilities. The
cell with the highest probability is
chosen, and the word associated
with it is produced as the output
for this time step.

Full Architecture Re-Visit

Before We End - BERT (Bidirectional Encoder Representations from Transformer)

Questions?

